An Examination of Alternative Winter Deicing Methods for Porous Asphalt

Why Conduct this Research?

Research Objectives

- Examine effectiveness of reduced/non chloride deicers on porous asphalt and compare to traditional salting methods on dense mix asphalt.
- Find conditions where each deicer works best using the recommended application (for dense mix asphalt).

Study Area Schematic

Potassium Acetate

5

- Clear, liquid deicer that consists of 50% aqueous potassium acetate by volume, and <1% corrosion inhibitors.
- Has been proven effective on impervious surfaces, and freezes around -76 degrees Fahrenheit.

De-Sugared Beet Molasses

- Desugared Beet Molasses and Brine— Consists of 20% De-sugared beet molasses and 80% salt brine.
 Successfully used in impervious pavements in New England and Midwest
- De-Sugared Beet Molasses and Water— Consists of 67% desugared beet molasses and 33% water.
 "Independently" created product and has never been used for this purpose.

Performance Metrics

7

- Skid Resistance (Friction)
- Percentage of Snow and Ice Cover
- Costs

Preliminary Results

8

 Potassium Acetate and De-Sugared Beet Molasses and Brine both appeared to be more effective than the De-Sugared Beet Molasses and Water.

• De-Sugared Beet Molasses and Brine and Potassium Acetate applied to porous asphalt appeared to be as effective, if not more effective than traditional salting on dense mix asphalt.

Product Cost:

	The prices below	DO NO	Cinclude I	Life-Cycle C	Costing!!
	Material	Rock Salt (tons)	CF7 (gals)	Ice Bite "S" (gals)	Ice Bite (gals)*
	Cost per gallon or ton	55	6.12	1.43	1.79
	Recommended Application Rate (gallons/tons per lane mile)	0.244	95	40	40
	Total Cost per lane Mile	\$13.42	\$581.64	\$57.20	\$71.60
		्रम् १८ विकास स्थाप इ.स.च्या			design of

Acknowledgements

- Dr. Tom Ballestero (Advisor), Dr. Alison Watts, Ann Scholz
- UNH Stormwater Center: Tim Puls, Jamie Houle
- UNH Buildings and Grounds
- UNH Parking Services
- Road Solutions, Inc.
- Cryotech Deicing Technologies
- Kris Houle Past UNH Stormwater Center Research

Questions?

Issues:

- Parking lot snow plowing
- Accidental salting of the study lot
- BPN Drift
 - Controlled in experiment by randomizing the data collection.
- Three different controls; two at different surfaces Acceptable Machine Drift = 1 BPN
- Surface Temperatures DMA 0% seal coated
 - Temperatures were checked prior to skid testing

PA Lot Cross-Section

